Tag: ISS

Safe journey back, Samantha!

Safe journey back, Samantha! This time it seems to be true: the mission of Samantha and her colleagues Terry Virts and Anton Shkaplerov will end 11 June after 199,7 days. Only 8 hours short of 200 days. Wednesday at 16:40, with almost a day in advance, Terry handed over the command of the Space Station to Gennady Padalka.
200 days in space. Credits: ESA/NASA

200 days in space. Credits: ESA/NASA

Thursday is the day of return. It is an early start before they close the hatch behind them once in the Soyuz capsule. This will be at around 8:55 CEST. At this point a series of checks and tests of their return vehicle will last for a few orbits. Around 12:20 CEST, the three astronauts leave Space Station: it is time for the so-called undocking. The Soyuz  “drops its moorings” and starts to fall, moving to a different orbit from the International Space Station. The return journey is effectively nothing more than a fall to the Earth in a controlled manner. After a few orbits, the most important moment comes: the Soyuz turns the engines on and gives the final push to start its deorbit at around 14:51. It then dives into the atmosphere. Soon after, two of the three modules that make up the Soyuz are discarded: the orbital module and the propulsion module have finished their task and are no longer needed. Only the landing module remains, protected by a heat shield. When it enters the more dense layers of the atmosphere, the module will be akin to a comet on fire, surrounded by glowing plasma. About 20 minutes from landing, scheduled for 15:43, the spacecraft manoeuvres to reduce its speed. Inside eight minutes it will slow to 800 km/h. 15 minutes before landing, four parachutes open: first two followed by two more in quick succession slowing the capsule to about 30 km / h. Just a second before landing, four small engines light up, like spaceships in science fiction movies, and slow the speed to impact to about 5 km/h. Despite being a bumpy ride, the astronaut’s is important: to make the reentry softer their seats are moulded to fit them perfectly, like protective nests. Despite this, there is no point in denying it: the return is no stroll in the park. Shocks, tears, decelerations: astronauts spend the last moments of their mission subjected to violent deceleration, rediscovering the meaning of weight. Canadian astronaut Chris Hadfield recounted how he was surprised to feel the weight of his tongue and lips, and that even talking felt different after his months in space. Knowing Samantha, and her communication skills, we are not panicking: she will be able to continue to talk as she did before! Safe journey home! Timeline Times in Central European Summer Time:
  • 8:55 Expedition 43 hatch closing
  • 12:18 Undocking command to open hooks and latches
  • 12:20 Undocking – Hooks open and physical separation of Soyuz TMA-15M
  • 12:23 Separation burn 1, an 8-second burn of the Soyuz engines, .60 m/s
  • 12:24 Separation burn 2, a 30-second burn of the Soyuz engines, 1.45 m/s
  • 14:51 Deorbit burn lasting 4:35, 128 m/s. Soyuz is now around 12 km from the International Space Station at 401.8 km altitude
  • 15:18 Separation of Modules at 140 km altitude
  • Landing site. Credits: NASA

    Landing site. Credits: NASA

    15:26 Maximum loads on the astronauts up to five times normal gravity at 36.5 km altitude
  • 15:28 Command to open parachutes at 10.7 km. Two Pilot Parachutes are first deployed, the second of which extracts the drogue chute, slowing the Soyuz down from a descent rate of 230 m/s to 80 m/s. The Main Parachute is then released, slowing the Soyuz to a 7.2 m/s. The Soyuz descends at an angle of 30 degrees to expel heat, then shifts to a straight vertical descent.
  • 15:43 Touchdown after engine firing to slow the Soyuz down to 1.5 m/s around 80 cm above ground.
Landing site: about 145 km southeast of Dzhezkazgan. Landing will occur approximately 1 hour, 34 minutes before sunset at the landing site in Kazakhstan.    

Don't panic

11/06/2015

I’m a plumber by profession

If I had some more free time – oh how I wish…! – if I had more free time and I had finished my home construction, landscaped the garden and my children were grown-up and no longer require my parenting, then I could finally read up on game theory. Or maybe learn to play the guitar, or drum. I might investigate what is happening in the field of electron microscopy – maybe even do a little more sports? Sitting on the sofa and try hard to not do anything might be an option too.
Columbus module. Credits: ESA/NASA

Columbus module. Credits: ESA/NASA

In all likelihood I would run out of time due to sheer recreational stress… The situation on the Space Station is comparable these days: Three of the astronauts on the International Space Station have had their return to Earth delayed so we unexpectedly had additional crew time for them. This does not mean that Samantha and company were finally able to fully enjoy the great view of the Earth, because here at the control centre we have a long wish list of things that we want done. We recently moved to Node 3 the Permanent Multipurpose Module (PMM), which was designed as a transport container for the Space Shuttle and left attached to Node 2 after the end of the Shuttle era. This move offers extra storage space so that Node 2 has an extra docking port for future visiting vehicles. We also finally exchanged the old-style video tape recorder in Columbus for a modern hard disk recorder. Water valve fixing Samantha faced exchanging a water valve, which had not been functioning as expected for some time now on Friday: we put the extensive activities on her timeline and it kept her busy. Samantha had to start work the day before by reconfiguring the Columbus module as the water valve is hidden behind panels next to the hatch and blocked by an experiment rack. So Samantha first had prepare the “Express rack 3” to tilt it away to enable access to the valve. Many cables and pipes had to be removed for power, nitrogen, as well as the venting and vacuum lines, video connections and data lines.
Anna Pateraki on the STRATOS console supporting the work from ground. Credits: DLR

Anna Pateraki on the STRATOS console supporting the work from ground. Credits: DLR

On Friday, Samantha had to tilt the rack forward into the cabin, which was easy to do in weightlessness. She now had access to the area where the water valves are in Columbus and could remove the Nomex cover. We were now looking into Columbus’s innards. Columbus needs to be actively cooled as some hardware produces heat which is removed by water. In addition the air of the module must be cooled: air conditioning in space! Lastly humidity is an issue, astronauts sweat like everyone else and the water in the air must be kept within limits. Condensation would be a serious problem, especially in areas where electrical current is present. Therefore we use our cooling-water system to force condensation in a special device that cools the air and dehumidifies it before sending the collected water to the American recycling system. Columbus has two water pumps to do all this and various mechanisms to adjust the temperature of the water coupled with two heat exchangers that transfer absorbed heat to the outer ammonia cooling circuit, from where the heat is radiated into space. Of course that requires a lot of valves, for water shutoff, mixing or bypassing, and today Samantha was looking to replace the cleverly-named “Water-On-Off Valve 6” which we call WOOV6. Naturally the Columbus Control Centre made sure no more water flowed through that valve – in addition we allowed it to warm slightly: we didn’t want to ask the Italian astronaut to put on winter gloves for this operation. With the Express Rack 3 tilted, normal air circulation was disrupted – meaning the smoke detectors could not monitor all areas of the module and the astronauts had to be “prime for smoke detection”.
Canadian astronaut Chris Hadfield also did some do-it-yourself in Columbus. Credits: NASA

Canadian astronaut Chris Hadfield also did some do-it-yourself in Columbus. Credits: NASA

With these prerequisites Samantha was “go” to start the 28-page procedure to replace the valve. For the next four hours the astronaut acted as Do-It-Yourselfer: she inspected the new WOOV, set up her workplace, investigated the old WOOV and took pictures of it, unplugged it in order: electric connections, water pipes – and eventually started to pull it out. Once installed she put in the new valve, insulated it and turned it on… In between there was a brief but hectic moment when Sam informed us that one of the quick-release fasteners was leaking. Water floating about the cabin is always something that we do not appreciate at all. We quickly got the situation under control though and she mopped up the spilled water. It was already evening in Europe before we could finally switch on the new valve for the first time from ground control. We let out a sigh of relief together with the engineers in Turin and Bremen – to misquote Galileo Galilei: “And yet it moves!” Well done – summer is here and it is important that cooling systems work… 😉

Don't panic

10/06/2015

Samantha overtakes Sunita as holder of longest spaceflight for women

Sunita Williams during spacewalk. Credits: NASA

Sunita Williams during spacewalk. Credits: NASA

Since Saturday 6 June at around 16:21 CET (14:21 GMT) ESA astronaut Samantha Cristoforetti holds the record for the longest single mission for a woman. NASA astronaut Sunita Williams previously held that record with 195 days after Expedition 33 on the International Space Station. Sunita remains the record-holder for number of spacewalks done by a woman (seven), including the most time spend on spacewalks in total for a woman at 50 hours, 40 minutes. Samantha’s Futura mission was extended after a problem with a Progress supply ferry. She already broke the record of longest single mission for an ESA astronaut last week.

Don't panic

06/06/2015

Cooking in space at the Restaurant at the end of the universe

Six month have passed already since the beginning the Futura mission and Node 1, our personal “Restaurant at the end of the universe” has witnessed many space meals, with dishes rehydrated or heated in our food warmer. Usually our dishes are ready to eat or at least very easy to assemble: quick and easy! Did I mention already that my favorite dish is the wonderful quinoa salad with mackerel by Stefano Polato, the official chef of the Futura mission and of Outpost42? But the curry chicken with mushrooms and peas is great as well. They are full meals, healthy and delicious! I took with me a pretty good supply of read-to-eat pouches, but I also have the ingredients in separate pouches: it’s possible to assemble them onboard, although it can be quite a challenge in weightlessness. Take a look!

It’s a bit of work, for sure, but I enjoy being able to change the quantities of the different ingredients a bit to vary the overall taste. I simply recreated the recipes of our chef Stefano, because I’m not a very creative cook. But maybe you have some ideas to suggest for my very last week onboard? Maybe a meal according to the principles we’ve been talking about on Outpost42. Here are my favorite ingredients here onboars, some from my bonus food and some from the ISS standard menu. Why don’t you try your recipe at home and send us a picture? Then we can see the difference making them in space. Or, if you’re prefer, you can create the Futura space recipes in your home kitchen. It’s easy, here Stefano showed me how to prepare them. And don’t forget to send us a picture! (On twitter with the hashtag #SpaceFoodAtHome or if you prefer Facebook just post them as a comment to this post). Power bar with Goji, chocolate and spirulina
Whole red rice with turmeric chicken
Quinoa salad with mackerel and vegetables
Samantha

It's rocket fuel

04/06/2015

Moving Leonardo

Update: Leonardo is now firmly in place attached to the Tranquility node.

Don’t panic! The International Space Station is getting some redecoration as the ~10 000 kg Leonardo module will be moved to a different location today.

The Italian-built Leonardo, also known as the more mundane Permanent Multipurpose Module, will be moved from the Unity module to the Tranquility module from 14:00 CEST. The Canadian-built Canadarm2 will grab Leonardo and transfer it to its new berthing place.


They closed the hatch between Leonardo and Unity yesterday and made sure there were no leaks. The partners that run the International Space Station are moving Leonardo to make extra room for visiting cargo ferries. Two types of vessels can visit the Space Station, spacecraft that dock automatically and ferries that need to be berthed using the Station’s robotic arm. Moving Leonardo will free up an extra docking port for spacecraft that require berthing with the robotic arm such as Dragon, Cygnus and the Japanese HTV.

Leonardo

Leonardo arrives at International Space Station in Space Shuttle cargo bay. Credits: ESA/NASA

Leonardo arrives at International Space Station in Space Shuttle cargo bay. Credits: ESA/NASA

The Leonardo module has an interesting history and is one of the reasons Samantha is currently on the Space Station. The module was designed and built in Italy by the Italian Space Agency and Thales Alenia Espace for use on NASA’s Space Shuttle. It’s first name was Leonardo Multi-Purpose Logistics Module as it performed a number of tasks in the Shuttle’s cargo bay. It flew to space and returned seven times between 2001 and 2010.

On its eighth spaceflight it was left permanently attached to the International Space Station in 2011. Since then it is used for storage and as extra space. Its name was subsequently changed to Permanent Multipurpose Module. In return for building and supplying Leonardo and other Multi-Purpose Logistics Modules, NASA agreed that the Italian Space Agency would send astronauts to the International Space Station. One of these astronaut flights arranged under this barter agreement is being filled by none other than Samantha Cristoforetti.

Watch the relocation live on NASA television from 14:00 CET today.

Don't panic

27/05/2015

Training for the worst

Practicing emergencies is necessary so I accept that the volunteer fire department near our home at Hochstadt runs their siren in the evening, even though it excites our 3-year-old daughter just before bedtime. We also need to practice emergencies on the International Space Station in space you cannot phone highly-trained rescue workers to come to the rescue. Astronauts must be able to fend for themselves, extinguish a fire and protect themselves from any fumes. Even radio contact with experts in control centers cannot be assumed to work in a worst-case scenario.

In today’s emergency exercise the control centres and astronauts worked together on a so-called On-Board Training or simply OBT. We had “stage directions” that defined for example that a leak would appear in the Japanese Kibo module through which air would escape.

The alarm sounded on the Space Station with its penetrating noise and the computer screens of our Flight Controller filled up with numerous error messages, proving that the International Space Station had configured itself in emergency mode. The astronauts onboard reported shortly afterwards to Mission Control Houston with the news that they had a pressure drop on the Space Station to contend with. All radio communication between crew and flight controllers began with the words “For the workout exercise:” to ensure that everybody knew it was not a real emergency, but an exercise.

The flight director in Houston declared a “Space Craft Emergency” – of preceded by “for the training exercise”. Sinje Steffen of the STRATOS team at the Columbus Control Centre checked whether Columbus was automatically reconfigured for this Rapid Depress scenario.

The astronauts convened in the meantime 350 km above close to their Soyuz spacecraft. Since the Russian capsules are the Station’s lifeboats, each astronaut has a well-defined place there. They are usually the first assembly point of crew in an emergency. Once there, they decide together on how to proceed based on the scheme “Warning – Gather – Fight”. In our emergency script scenario, the astronauts had about five hours until critical low pressure (designated as T.Res) would be reached – time enough to try to find the leaking module and possibly stop the International Space Station from ‘bleeding out’.

The astronauts followed the well-defined sequence to close various hatches to measure on which side the pressure dropped further. Slowly they were able to find their way closer and closer to the actual leak.

Columbus Flight Director Katja Leuoth and her team was busy keeping up with the falling pressure values: a long list of minimum air pressure certification values exist for all Columbus components – each of these elements had to be switched off before their critical pressure was reached. Today’s commands were “for the training exercise”, so actual commands were not issued and power was not actually switched-off…

The rapid pressure-drop (rapid depress) is one of three major emergency scenarios that are defined for the International Space Station.

Depending on the size of the leak, there are various ways to “clog the hole”: from an oversized bicycle-patch to a plasticine-like material. All sealing is done of course from inside the space station – and is easy: Compared to the vacuum of space the pressure inside the ISS is considerable higher and pushes any seal onto the leak – a clear advantage compared to repairing a bicycle inner tube…

Thomas Uhlig, Columbus Control Centre

Don't panic

21/04/2015

Taming a monster: ESA MARES experiment

Some operations make us nervous because there is not much about we can do about them from ground. The MARES experiment in the Columbus space laboratory is one of these: it is large, highly complex, equipment and can sometimes be a bit of a problem child.

The Muscle Atrophy Research and Exercise system (MARES) allows us to investigate muscle groups of astronauts and contributes to answering essential questions that arise during long space flights: how does the human body react to weightlessness? How fast to muscles degrade when they are not used in weightlessness?

Muscle Atrophy Research and Exercise System (MARES). Credits: ESA

Muscle Atrophy Research and Exercise System (MARES). Credits: ESA

We think of MARES as a bit of a monster as it fills half of the Columbus module –it takes a while to unpack so each experiment involving MARES takes a long time, afterwards it must be disassembled again. It looks a little like the torture devices that can be found in many fitness centres – this might explain why the flight controllers have so much respect for the machine. It is a mechanically very complex device and any problems astronauts have encountered in the past have proven difficult to solve over the radio…

So it was with a sigh of relief on my part that I was not on console when this was planned to be setup: many hours of astronaut crew time are designated in the timeline to work on MARES. I got nervous again when a colleague fell sick and I had to take over after all …

Ultimately, of course my colleagues and ESA astronaut Samantha Cristoforetti did excellent work: they had to replace a battery (a machine of this size requires more power than Columbus can provide on its own), install a new hard drive and finally test the device for the first time in orbit through by calibrating its servo-motors.

The machine was then put back where every monster belongs, in its “cage”, an experiment cabinet in Columbus – until next time…!  

Thomas Uhlig Columbus Control Centre


Cover picture:  Only in Space recommended: four years ago MARES was installed in Columbus – Astronaut Doug Wheelock and proves prowess … (Credits: NASA)

Don't panic

27/03/2015

Spotting the Solar eclipse on the Space Station

Map of ISS compared to solar ecclipse. Credits: G. Holtkamp

Map of ISS in relation to solar eclipse. Credits: G. Holtkamp

This Friday, parts of the northern hemisphere will be shrouded in darkness as the Moon moves in between the Sun and the Earth.

For ESA astronaut Samantha Cristoforetti and her crewmates on the International Space Station don’t have to worry about clouds getting in the way of their view. From their orbit above Earth 400 km high they will have a great view of the eclipse.

From around 09:00 UTC the Moon will block alot of the Sunlight from reaching the International Space Station, just missing a total eclipse

Here is what the Earth looks like during a solar eclipse. The shadow of the Moon can be seen darkening part of Earth. This shadow moved across the Earth at nearly 2000 kilometers per hour. Credit: Mir 27 Crew; Copyright: CNES

Moon’s shadow on Earth during eclipse seen from Russian Mir station in 1999. The shadow moved across our planet at nearly 2000 kilometers an hour.
Credit: Mir 27 Crew; Copyright: CNES

Aside from looking up at the Solar eclipse, Samantha will have another interesting view: if she looks down at Earth she will see the shadow the Moon casts on the clouds and ground. In 1999 astronauts on the Russian space station MIR took this eclipse picture with the spectacular shadow of the Moon on our planet.

At the time of the Solar eclipse Samantha will be working on the Triplelux experiment that is investigating how immune cells adapt to spaceflight. To run this experiment she will put immune cells in a centrifuge and put them 90 minutes later in the Space Station’s freezer for analysis back on Earth.

Samantha using centrifuge in preparation for the  Triplelux experiment.

Samantha using centrifuge in preparation for the Triplelux experiment.

If the experiment runs smoothly Samantha might have time between the two operations to grab a camera and float to the Cupola observatory to take pictures and video of the eclipse.

For us on Earth, we will have to hope for clear skies and follow Samantha on Twitter via @AstroSamantha.

Don't panic

17/03/2015

A walk around space with Barry and Terry

After 91 days of living in their new home in space they finally went outside Not to catch some fresh air of course…that would be quit dangerous!

US astronauts Barry Wilmore and Terry Virts commenced the first of three spacewalks  last Saturday. It was Barry’s second spacewalk after his first one last October and Terry’s first.

The two astronauts, already nicknamed the ‘cable guys’  have to rig cables on the International Space Station for new docking ports for commercial and international spacecraft called International Docking Adapters or IDA. They will be delivered on two Space-X  Dragon spacecraft in the near future.

The adapters are built by Boeing and will arrive separately as Dragon cargo that will dock to the Harmony Module or Node 2. Node 2 already has two Pressurized Mating Adapter (PMA) which are used to connect spacecraft and modules with different docking mechanisms. They resemble tunnels that connect to spacecraft.

The tasks for the U.S. spacewalks #29, #30, #31.

The tasks for the U.S. spacewalks #29, #30, #31.

The goal will then be to link each International Docking Adapters to a Pressurized Mating Adapter … imagine doing it with Lego, more or less!

But like with Lego there is a possibility that one piece, in this case the Pressurized Mating Adapter could be better used elsewhere. That is the case with PMA-3. The first International Docking Adapter is relatively easy to install: it is connected to PMA-2, which is installed on the Harmony Module facing the direction the Space Station moves.

The second International Docking Adapter requires more work.  The international adapter will be connected to PMA-3 but it first has to be moved from Node 3 Harmony to Node 2 Unity to face towards space.

Why all this work? The new docking adapters will be used to welcome the new commercial cargos from Space-X and Boeing , starting most likely from the last part of 2017. In the long run the two new Adapters will allow the Space Station to host one more crew from the present six.

In the meantime new cargo arrived at the Space Station bringing food, supplies and new hardware for the experiments.

It has been a busy period  for the astronauts living on the ISS that in a very short period has seen the arrival of Dragon and the depart of both Dragon and the last ever European cargo spaceship ATV-5. Progress 58, the Russian cargo just arrived at the Station, will stay docked to the Station until next August.

The astronauts have a lot of work to do in any case: two more spacewalks are expected this week and a new crew will soon arrive to start Expedition 43.

Stefano Sandrelli

Cover image: Terry Virts as seen from the Cupola of the ISS and photographed by Samantha Cristoforetti on Feb.21, 2015. Credits: ESA/NASA

For more pics of the U.S. spacewalk #29: http://www.nasa.gov/mission_pages/station/expeditions/expedition42/gallery.html#.VOtMxvmG-So

Don't panic

23/02/2015

Exercise in space with Samantha!

The most important effects of microgravity on the human body are losing bone density and deteriating muscle strength. Each astronaut on the International Space Station exercises 150 minutes every day in the “space gym” to minimise the effects of living in space. Astronauts can use several exercise machines to simulate training on Earth. One of these is the Advanced Resistive Exercise Device or ARED for friends. We asked ESA astronaut Samantha Cristoforetti to show and explain how ARED works…ready?


 

Not rocket science

20/02/2015